C++ K Centers Problem














































C++ K Centers Problem





K Centers Problem | Set 1 (Greedy Approximate Algorithm)


Given n cities and distances between every pair of cities, select k cities to place warehouses (or ATMs or Cloud Server) such that the maximum distance of a city to a warehouse (or ATM or Cloud Server) is minimized.

For example consider the following four cities, 0, 1, 2 and 3 and distances between them, how do place 2 ATMs among these 4 cities so that the maximum distance of a city to an ATM is minimized.

kcenters1

There is no polynomial time solution available for this problem as the problem is a known NP-Hard problem. There is a polynomial time Greedy approximate algorithm, the greedy algorithm provides a solution which is never worse that twice the optimal solution. The greedy solution works only if the distances between cities follow Triangular Inequality (Distance between two points is always smaller than sum of distances through a third point).

The 2-Approximate Greedy Algorithm:
1) Choose the first center arbitrarily.


2) Choose remaining k-1 centers using the following criteria.
       Let c1, c2, c3, ci be the already chosen centers. Choose
       (i+1)th center by picking the city which is farthest from already
       selected centers, i.e, the point p which has following value as maximum
                 Min[dist(p, c1), dist(p, c2), dist(p, c3),  dist(p, ci)]

greedyAlgo

Example (k = 3 in the above shown Graph)
a) Let the first arbitrarily picked vertex be 0.

b) The next vertex is 1 because 1 is the farthest vertex from 0.

c) Remaining cities are 2 and 3. Calculate their distances from already selected centers (0 and 1). The greedy algorithm basically calculates following values.

        Minimum of all distanced from 2 to already considered centers
        Min[dist(2, 0), dist(2, 1)] = Min[7, 8] = 7

        Minimum of all distanced from 3 to already considered centers
        Min[dist(3, 0), dist(3, 1)] = Min[6, 5] = 5

        After computing the above values, the city 2 is picked as the value corresponding to 2 is maximum.


Note that the greedy algorithm doesn%u2019t give best solution for k = 2 as this is just an approximate algorithm with bound as twice of optimal.

Proof that the above greedy algorithm is 2 approximate.
Let OPT be the maximum distance of a city from a center in the Optimal solution. We need to show that the maximum distance obtained from Greedy algorithm is 2*OPT.

The proof can be done using contradiction.

a) Assume that the distance from the furthest point to all centers is > 2.OPT.

b) This means that distances between all centers are also > 2.OPT.

c) We have k + 1 points with distances > 2.OPT between every pair.

d) Each point has a center of the optimal solution with distance <= OPT to it.

e) There exists a pair of points with the same center X in the optimal solution (pigeonhole principle: k optimal centers, k+1 points)

f) The distance between them is at most 2.OPT (triangle inequality) which is a contradiction



More Articles of M Mounika:

Name Views Likes
C++ Segmented Sieve (Print Primes In a Range) 162 0
C++ Sieve Of Erastosthenes 135 0
C++ Gold Mine Problem 295 0
C++ Merge K Sorted Arrays 116 0
C++ K Centers Problem 240 0
C++ Find Nth Catalan Number 311 0
C++ Inplace Rotate square matrix by 90 degrees 285 0
C++ Find Non Repeating Elements in Array 86 0
C++ Merge Two Binary Trees 120 0
C++ Sum of Numbers From Root To Leaf Paths 89 0
C++ Meta Strings 91 0
C++ Flood Fill Algorithm 402 0
C++ smallest substring with maximum distinct characters 199 0
C++ Smallest window with all characters in string 93 0
C++ Minimum Removal of Characters from string to make its permutation as palindrome 86 0
C++ Minimum characters added at front of string in palindrome conversion 69 0
C++ Number of Bracket Reversals needed to make expression Balanced 72 0
C++ String to Palindrome with Append Function 83 0
C++ WildCard pattern matching 75 0
C++ Anagram substring Search 72 0
C++ Manachars Algorithm 74 0
C++ Search String in Grid 83 0
C++ String Matching(Z Algorithm) 67 0
C++ String Matching(Naive Algorithm) 113 0
C++ String Matching(KMP Algorithm) 140 0
C++ Remove Duplicates From String 110 0
C++ Basics of String Manipulation 85 1
C++ Disjoint Data Structure Cycle Detection 86 0
C++ Problem On Disjoint Data Structures 94 0
C++ Disjoint Data Structures Part3 78 0
Disjoint Data Structures Part2 90 0
Disjoint Data Structures 93 1
C++ Segment Trees 321 2
C++ Trie Cost of Data 290 1
C++ Trie Datastructure 278 1
C++ Greedy Approach Minimum number of coins 525 0
C++ Greedy Approach Maximum height Pyramid 328 1
C++ Greedy Approach String lexicographically largest subsequence 246 0
C++ Greedy Approach Lexicographically largest subsequence 364 0
C++ Greedy Approach Prims MST 398 1
C++ Greedy Approach Krushkals MST 458 1
C++ Greedy Approach N-array maximum sum 333 1
C++ Greedy Approach Policemen Catch Thieves 563 1
C++ Greedy Approach Maximum product Subset 546 1
C++ Greedy Approach Minimum Product Subset 348 1
C++ Greedy Approach Fractional Knapsack 737 1
C++ Greedy Approach-Activity Selection Problem 745 1
C++ Greedy Approach-Egyptian Fractions 639 0
C++ Greedy Approach-Huffman Codes 1031 1
C++ Introduction to Greedy Approach 955 2

Comments