Python PyWin32 Getting Started PyWin32

Python PyWin32 Getting Started PyWin32

Getting Started PyWin32

The pywin32 package provides access to various Windows APIs within Python. These APIs can be used to create UI objects (windows, dialogs, etc..), interface to native or 3rd party libraries using COM, access low-level OS functionality, and much more.


  • Go to the pywin32 download page and download the latest version of the pywin32 installer. Use the table below to determine which version of Python your Vizard installation uses:
    • Vizard 2.x uses Python 2.3
    • Vizard 3.x uses Python 2.4
    • Vizard 4.x uses Python 2.7
    • Vizard 5.x uses Python 2.7
  • Run the installer. It should automatically detect Vizard's Python installation. If you have multiple Python installations on your computer, make sure you select the Vizard Python installation.

Once pywin32 is installed, you can browse the installation folder for documentation and sample scripts. The pywin32 package provides a wealth of functionality that cannot be completely covered by this article.

Here is a very short example of opening up Excel:

import win32com.client as win32
excel = win32.gencache.EnsureDispatch('Excel.Application')

excel.visible = True
_ = input("Press ENTER to quit:")


Once you run this from the command line, you should see Excel open up. When you press ENTER, the application will close.

More Articles of Aditi Kothiyal:

Name Views Likes
Python AdaBoost Mathematics Behind AdaBoost 421 1
Python PyCaret How to optimize the probability threshold % in binary classification 2069 0
Python K-means Predicting Iris Flower Species 1322 2
Python PyCaret How to ignore certain columns for model building 2624 0
Python PyCaret Experiment Logging 680 0
Python PyWin32 Open a File in Excel 941 0
Python Guppy GSL Introduction 219 2
Python Usage of Guppy With Example 1101 2
Python Naive Bayes Tutorial 552 2
Python Guppy Recent Memory Usage of a Program 892 2
Introduction to AdaBoost 290 1
Python AdaBoost Implementation of AdaBoost 513 1
Python AdaBoost Advantages and Disadvantages of AdaBoost 3713 1
Python K-Means Clustering Applications 332 2
Python Random Forest Algorithm Decision Trees 439 0
Python K-means Clustering PREDICTING IRIS FLOWER SPECIES 457 1
Python Random Forest Algorithm Bootstrap 476 0
Python PyCaret Util Functions 441 0
Python K-means Music Genre Classification 1763 1
Python PyWin Attach an Excel file to Outlook 1541 0
Python Guppy GSL Document and Test Example 248 2
Python Random Forest Algorithm Bagging 386 0
Python AdaBoost An Example of How AdaBoost Works 279 1
Python PyWin32 Getting Started PyWin32 603 0
Python Naive Bayes in Machine Learning 375 2
Python PyCaret How to improve results from hyperparameter tuning by increasing "n_iter" 1723 0
Python PyCaret Getting Started with PyCaret 2.0 356 1
Python PyCaret Tune Model 1325 1
Python PyCaret Create your own AutoML software 321 0
Python PyCaret Intoduction to PyCaret 296 1
Python PyCaret Compare Models 2696 1
Python PyWin Copying Data into Excel 1153 0
Python Guppy Error: expected function body after function declarator 413 2
Python Coding Random forest classifier using xgBoost 247 0
Python PyCaret How to tune "n parameter" in unsupervised experiments 659 0
Python PyCaret How to programmatically define data types in the setup function 1403 0
Python PyCaret Ensemble Model 805 1
Python Random forest algorithm Introduction 227 0
Python k-means Clustering Example 337 1
Python PyCaret Plot Model 1243 1
Python Hamming Distance 715 0
Python Understanding Random forest algorithm 311 0
Python PyCaret Sort a Dictionary by Keys 244 0
Python Coding Random forest classifier using sklearn 340 0
Python Guppy Introduction 368 2
Python How to use Guppy/Heapy for tracking down Memory Usage 1069 2
Python AdaBoost Summary and Conclusion 232 1
Python PyCaret Create Model 365 1
Python k -means Clusturing Introduction 325 2
Python k-means Clustering With Example 348 2