| # import classification module |
| from pycaret.classification import * |
|
|
| # init setup |
| clf1 = setup(data, target = 'name-of-target') |
|
|
| # train a decision tree model |
| dt = create_model('dt') |
|
|
| # train a bagging classifier on dt |
| bagged_dt = ensemble_model(dt, method = 'Bagging') |
|
|
| # train a adaboost classifier on dt with 100 estimators |
| boosted_dt = ensemble_model(dt, method = 'Boosting', n_estimators = 100) |
|
|
| # train a votingclassifier on all models in library |
| blender = blend_models() |
|
|
| # train a voting classifier on specific models |
| dt = create_model('dt') |
| rf = create_model('rf') |
| adaboost = create_model('ada') |
| blender_specific = blend_models(estimator_list = [dt,rf,adaboost], method = 'soft') |
|
|
| # train a voting classifier dynamically |
| blender_top5 = blend_models(compare_models(n_select = 5)) |
|
|
| # train a stacking classifier |
| stacker = stack_models(estimator_list = [dt,rf], meta_model = adaboost) |
|
|
| # stack multiple models dynamically |
| top7 = compare_models(n_select = 7) |
| stacker = stack_models(estimator_list = top7[1:], meta_model = top7[0])
|
Predict Model
As the name suggests, this function is used for inference / prediction. Here is how you can use it:
| # train a catboost model |
| catboost = create_model('catboost') |
|
|
| # predict on holdout set (when no data is passed) |
| pred_holdout = predict_model(catboost) |
|
|
| # predict on new dataset |
| new_data = pd.read_csv('new-data.csv') |
| pred_new = predict_model(catboost, data = new_data) |
Comments