Convert Pandas DataFrame into JSON
To convert pandas DataFrames to JSON format we use the function DataFrame.to_json()
from the pandas library in Python. There are multiple customizations available in the to_json function to achieve the desired formats of JSON.
We now look at a example to understand the usage of the function DataFrame.to_json.
Example 1: Basic usage
import numpy as np
import pandas as pd
data = np.array([['1', '2'], ['3', '4']])
dataFrame = pd.DataFrame(data, columns = ['col1', 'col2'])
json = dataFrame.to_json()
print(json)
output:
{"col1":{"0":"1","1":"3"},"col2":{"0":"2","1":"4"}}
Example 2: Exploring the %u2018orient%u2019 attribute of DataFrame.to_json function
import numpy as np
import pandas as pd
data = np.array([['1', '2'], ['3', '4']])
dataFrame = pd.DataFrame(data, columns = ['col1', 'col2'])
json = dataFrame.to_json()
print(json)
json_split = dataFrame.to_json(orient ='split')
print("json_split = ", json_split, "\n")
json_records = dataFrame.to_json(orient ='records')
print("json_records = ", json_records, "\n")
json_index = dataFrame.to_json(orient ='index')
print("json_index = ", json_index, "\n")
json_columns = dataFrame.to_json(orient ='columns')
print("json_columns = ", json_columns, "\n")
json_values = dataFrame.to_json(orient ='values')
print("json_values = ", json_values, "\n")
json_table = dataFrame.to_json(orient ='table')
print("json_table = ", json_table, "\n")
output:
{"col1":{"0":"1","1":"3"},"col2":{"0":"2","1":"4"}}
json_split = {"columns":["col1","col2"],"index":[0,1],"data":[["1","2"],["3","4"]]}
json_records = [{"col1":"1","col2":"2"},{"col1":"3","col2":"4"}]
json_index = {"0":{"col1":"1","col2":"2"},"1":{"col1":"3","col2":"4"}}
json_columns = {"col1":{"0":"1","1":"3"},"col2":{"0":"2","1":"4"}}
json_values = [["1","2"],["3","4"]]
json_table = {"schema": {"fields":[{"name":"index","type":"integer"},{"name":"col1","type":"string"},{"name":"col2","type":"string"}],"primaryKey":["index"],"pandas_version":"0.20.0"}, "data": [{"index":0,"col1":"1","col2":"2"},{"index":1,"col1":"3","col2":"4"}]}
Comments