import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()
cancer
cancer.keys()
print(cancer["DESCR"])
#Data set description
print(cancer["target"])
#target values
#0 indicates malignant
#1 indicates benign
cancer["target_names"]
#target names
cancer["feature_names"]
#feature names
cancer["data"].shape
#data shape i.e 569 rows and 30 columns
df_cancer=pd.DataFrame(np.c_[cancer["data"],cancer["target"]],columns=np.append(cancer["feature_names"],["target"]))
df_cancer
#data set after forming it into dataframe
sns.pairplot(df_cancer,hue="target",vars=['mean smoothness','mean perimeter','mean texture','mean area','mean radius'])
#pairplots between 5 features mean radius,mean texture,mean perimeter,mean area,mean smoothness
sns.countplot(df_cancer["target"])
#histogram representing number of 0's and 1's in target
plt.figure(figsize=(30,10))
sns.heatmap(df_cancer.corr(),annot=True)
#heat map representing corelations between each feature
x=df_cancer.drop(["target"],axis=1)
x
y=df_cancer["target"]
y